(Steps Shown) Social Gain The average quantity of sculptures consumers will demand can be modeled as $D(p)=-1.003 p^2-20.689 p+850.375$ sculptures, and
Question: Social Gain The average quantity of sculptures consumers will demand can be modeled as $D(p)=-1.003 p^{2}-20.689 p+850.375$ sculptures, and the average quantity that producers will supply can be modeled as
\[S(p)=\left\{ \begin{array}{*{35}{l}} 0\text{ sculptures} & \text{when}\,\,p<4.5 \\ 0.256{{p}^{2}}+8.132p & {} \\ +250.097\text{ sculptures} & \text{when}\,\,p\ge 4.5 \\ \end{array} \right.\]where the market price is \(p\) hundred dollars per sculpture.
- How much are consumers willing and able to spend for 20 sculptures?
- How many sculptures will producers supply at $\$ 500$ per sculpture? Will supply exceed demand at this quantity?
- Determine the total social gain when sculptures are sold at the equilibrium price.
Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document 