[Solution Library] Random variables Y_1 and Y_2 have a joint distribution with constant parameter -1≤ α ≤ 1 : f(y_1,y_2)= (1-α ((1-2e^-y_1)(1-2e^-y_2)))e^-y_1-y_2
Question: Random variables \({{Y}_{1}}\) and \({{Y}_{2}}\) have a joint distribution with constant parameter \(-1\le \alpha \le 1\) :
\[f\left( {{y}_{1}},{{y}_{2}} \right)=\left\{ \begin{aligned} & \left( 1-\alpha \left( \left( 1-2{{e}^{-{{y}_{1}}}} \right)\left( 1-2{{e}^{-{{y}_{2}}}} \right) \right) \right){{e}^{-{{y}_{1}}-{{y}_{2}}}}\text{ for 0}\le {{y}_{1}},0\le {{y}_{2}} \\ & 0\text{ otherwise} \\ \end{aligned} \right.\]- Find the marginal distribution for Y 1 . (4 points)
- Find the marginal distribution for Y 2 . (4 points)
- For what value of \(\alpha \) are Y 1 and Y 2 independent? (2 points)
- Find \(\operatorname{cov}\left( {{Y}_{1}},{{Y}_{2}} \right)\) for all values of \(\alpha \). (4 points)
- For what value of \(\alpha \) is \(\operatorname{cov}\left( {{Y}_{1}},{{Y}_{2}} \right)=0\) ? (1 point)
- Find \(\operatorname{var}\left[ {{Y}_{1}}-{{Y}_{2}} \right]\). (5 points)
Price: $2.99
Solution: The downloadable solution consists of 3 pages
Deliverable: Word Document 