[Step-by-Step] Maximize z=x_1-3 x_2+2 x_3 s.t. 2x_1+2x_2-2x_3≤ 6 (Resource 1) -x_2+2x_3≤ 4 (Resource 2) and x_1 ≥q 0 x_2 ≥q 0 * x_3 ≥qslant
Question:
Maximize \(z=x_{1}-3 x_{2}+2 x_{3}\)
s.t.
\(2{{x}_{1}}+2{{x}_{2}}-2{{x}_{3}}\le 6\) (Resource 1)
\(-{{x}_{2}}+2{{x}_{3}}\le 4\) (Resource 2)
and \(x_{1} \geq 0 \quad x_{2} \geq 0 \times x_{3} \geqslant 0\)
- Construct the dual problem for this Primal problem.
- Solve the dual problem graphically. Use this solution to identify the shadow prices for the resources in the primal problem
Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document 