(Step-by-Step) An n * n matrix M defines a linear map from R^n to R^n. Note that M^2 also defines a linear map from R^n to R^n. a: Show that if v ∈
Question: An \(n \times n\) matrix \(M\) defines a linear map from \(\mathbb{R}^{n}\) to \(\mathbb{R}^{n}\). Note that \(M^{2}\) also defines a linear map from \(\mathbb{R}^{n}\) to \(\mathbb{R}^{n}\).
a: Show that if \(v \in \operatorname{im}\left(M^{2}\right)\), then \(v \in \operatorname{im}(M)\), meaning we have the inclusion of subspaces \(\operatorname{im}\left(M^{2}\right) \subset \operatorname{im}(M)\)
b: What are the corresponding statements about \(\operatorname{ker}(M)\) and \(\operatorname{ker}\left(M^{2}\right) ?\)
c: Find a \(3 \times 3\) matrix \(M\) with \(\operatorname{im}(M) \neq \operatorname{im}\left(M^{2}\right)\) and also (necessarily - why?!) \(\operatorname{ker}(M) \neq \operatorname{ker}\left(M^{2}\right)\)
Deliverable: Word Document 