[Steps Shown] Let X_1,X_2,....,X_n be independent random variables, and all are U(0,1). Define X=max X_1,...,X_n V=min X_1,X_2,...,X_n Compute E(max X_1,X_2)


Question: Let \({{X}_{1}},{{X}_{2}},....,{{X}_{n}}\) be independent random variables, and all are \(U\left( 0,1 \right)\). Define

\[X=\max \left\{ {{X}_{1}},...,{{X}_{n}} \right\}\] \[V=\min \left\{ {{X}_{1}},{{X}_{2}},...,{{X}_{n}} \right\}\]
  1. Compute \(E\left( \max \left\{ {{X}_{1}},{{X}_{2}} \right\} \right)\) and \(E\left( \min \left\{ {{X}_{1}},{{X}_{2}} \right\} \right)\)
  2. Compute \(E\left( X \right)\) and \(E\left( V \right)\) in general.
  3. Can you argue directly that \(1-E\left( \max \left\{ {{X}_{1}},...,{{X}_{n}} \right\} \right)=E\left( \min \left\{ {{X}_{1}},...,{{X}_{n}} \right\} \right)\)

Price: $2.99
Solution: The downloadable solution consists of 3 pages
Deliverable: Word Document

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in