[Solution] Let X_1,X_2,....,X_n be N(μ ,σ ^2) independent random variables. Let X̄=1/n∑limits_i=1^nX_i and α ∈ (0,1) Assume that n


Question: Let \({{X}_{1}},{{X}_{2}},....,{{X}_{n}}\) be \(N\left( \mu ,{{\sigma }^{2}} \right)\) independent random variables. Let \(\bar{X}=\frac{1}{n}\sum\limits_{i=1}^{n}{{{X}_{i}}}\) and \(\alpha \in \left( 0,1 \right)\)

  1. Assume that n = 25 and \(\Pr \left( |\bar{X}-\mu |>2{{z}_{\alpha /2}} \right)=\alpha \). Find \({{\sigma }^{2}}\)
  2. Assume that n = 25 and that \({{\sigma }^{2}}\) is unknown. Let \({{S}^{2}}=\frac{1}{24}\sum\limits_{i=1}^{25}{{{\left( {{X}_{i}}-\bar{X} \right)}^{2}}}\). Find c such that \(\Pr \left( \frac{5|\bar{X}-\mu |}{S}>c \right)=\alpha \)

Price: $2.99
Solution: The downloadable solution consists of 1 pages
Deliverable: Word Document

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in