(See Steps) Let T:R^3→ R^3 be a linear transformation. Let S= vecv_1,vecv_2,vecv_3 be a basis for R^3, where vecv_1=(0,1,3), vecv_2=(-1,1,2), vecv_3=(-3,2,2)
Question: Let \(T:{{R}^{3}}\to {{R}^{3}}\) be a linear transformation. Let \(S=\left\{ {{{\vec{v}}}_{1}},{{{\vec{v}}}_{2}},{{{\vec{v}}}_{3}} \right\}\) be a basis for \({{R}^{3}}\), where
\({{\vec{v}}_{1}}=\left( 0,1,3 \right)\), \({{\vec{v}}_{2}}=\left( -1,1,2 \right)\), \({{\vec{v}}_{3}}=\left( -3,2,2 \right)\)
and
\(T\left( {{{\vec{v}}}_{1}} \right)=\left( 1,1,1 \right)\), \(T\left( {{{\vec{v}}}_{2}} \right)=\left( 1,-1,1 \right)\), \(T\left( {{{\vec{v}}}_{3}} \right)=\left( 1,1,-1 \right)\)
- Find the formula for \(T\left( {{x}_{1}},{{x}_{2}},{{x}_{3}} \right)\). Use the formula to compute \(T\left( 7,3,-2 \right)\).
- Find the matrix A that represents T, and use the matrix A to find \(T\left( 7,3,-2 \right)\).
Deliverable: Word Document 