[Solved] (a) If X and Y are independent random variables, var;(X)=4, and var;(Y)=3, find var;(-X-2Y+3). (4 points) (b) Show that E[ (X-μ)^2 ]=E(X^2)-μ
Question: (4 points) (a) If X and Y are independent random variables, \(\operatorname{var}\left( X \right)=4\), and \(\operatorname{var}\left( Y \right)=3\), find \(\operatorname{var}\left( -X-2Y+3 \right)\).
(4 points) (b) Show that \(E\left[ {{\left( X-\mu \right)}^{2}} \right]=E\left( {{X}^{2}} \right)-{{\mu }^{2}}\), where µ:= E[X].
Price: $2.99
Solution: The downloadable solution consists of 1 pages
Deliverable: Word Document 