(See) (a) Given a transformation coming from x=x[u, v, w], y=y[u, v, w], and z=z[u, v, w] Say how you use grad; x[u, v, w], grady;[u, v, w], and gradz;[u,
Question: (a) Given a transformation coming from
\(x=x[u, v, w], y=y[u, v, w]\), and \(z=z[u, v, w]\)
Say how you use
\(\operatorname{grad} x[u, v, w], \operatorname{grady}[u, v, w]\), and \(\operatorname{gradz}[u, v, w]\)
to calculate \(V_{x y z}[u, v, w] \geq 0\)
Then discuss the meaning of \(\mathrm{V}_{\mathrm{xyz}}[\mathrm{u}, \mathrm{v}, \mathrm{w}]\)
(b) Set numbers \(r^{*}\), slow, shigh, tlow, and thigh so that the xyz-points
\[\begin{aligned} &\{x[s, t], y[s, t], z[s, t]\}= \\ &\quad\left\{\mathrm{r}^{*} \operatorname{Sin}[s] \operatorname{Cos}[t], r^{*} \operatorname{Sin}[s] \operatorname{Sin}[t], r^{*} \operatorname{Cos}[s]\right\} \end{aligned}\]
with slow \(\leq \mathrm{s} \leq\) shigh and tlow \(\leq \mathrm{t} \leq\) thigh describe the part of the sphere
\[x^{2}+y^{2}+z^{2}=4\]consisting of those points with \(x \geq 0\)
Deliverable: Word Document 