(See) (a) Given a transformation coming from x=x[u, v, w], y=y[u, v, w], and z=z[u, v, w] Say how you use grad; x[u, v, w], grady;[u, v, w], and gradz;[u,


Question: (a) Given a transformation coming from

\(x=x[u, v, w], y=y[u, v, w]\), and \(z=z[u, v, w]\)

Say how you use

\(\operatorname{grad} x[u, v, w], \operatorname{grady}[u, v, w]\), and \(\operatorname{gradz}[u, v, w]\)

to calculate \(V_{x y z}[u, v, w] \geq 0\)

Then discuss the meaning of \(\mathrm{V}_{\mathrm{xyz}}[\mathrm{u}, \mathrm{v}, \mathrm{w}]\)

(b) Set numbers \(r^{*}\), slow, shigh, tlow, and thigh so that the xyz-points

\[\begin{aligned} &\{x[s, t], y[s, t], z[s, t]\}= \\ &\quad\left\{\mathrm{r}^{*} \operatorname{Sin}[s] \operatorname{Cos}[t], r^{*} \operatorname{Sin}[s] \operatorname{Sin}[t], r^{*} \operatorname{Cos}[s]\right\} \end{aligned}\]

with slow \(\leq \mathrm{s} \leq\) shigh and tlow \(\leq \mathrm{t} \leq\) thigh describe the part of the sphere

\[x^{2}+y^{2}+z^{2}=4\]

consisting of those points with \(x \geq 0\)

Price: $2.99
Solution: The downloadable solution consists of 1 pages
Deliverable: Word Document

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in