Solution: Give a counter example to show that each of the following statement is false: If the general term a_n tends to zero, then ∑limits_n=0^∞


Question: Give a counter example to show that each of the following statement is false:

  1. If the general term \({{a}_{n}}\) tends to zero, then \(\sum\limits_{n=0}^{\infty }{{{a}_{n}}}\) converges.
  2. \(\sum\limits_{n=0}^{\infty }{c\left( {{a}_{n}} \right)}=c\sum\limits_{n=0}^{\infty }{{{a}_{n}}}\) for a constant \(c\), when \(\sum\limits_{n=0}^{\infty }{{{a}_{n}}}\) does not converge.
  3. \(\sum\limits_{n=0}^{\infty }{\left( {{a}_{n}}+{{b}_{n}} \right)}=\sum\limits_{n=0}^{\infty }{{{a}_{n}}}+\sum\limits_{n=0}^{\infty }{{{b}_{n}}}\) when \(\sum\limits_{n=0}^{\infty }{{{a}_{n}}}\) and \(\sum\limits_{n=0}^{\infty }{{{b}_{n}}}\) do not converge.

Price: $2.99
Solution: The downloadable solution consists of 1 pages
Deliverable: Word Document

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in