(Solution Library) Evaluate the limit (if it exists) of each of the following sequences. Indicate the results (definitions, theorems, etc.) you use to support


Question: Evaluate the limit (if it exists) of each of the following sequences. Indicate the results (definitions, theorems, etc.) you use to support your conclusions

a - \({{a}_{n}}={{\left( \frac{n-3}{n} \right)}^{n}}\)

b- \({{a}_{n}}=\frac{{{\left( n! \right)}^{2}}}{\left( 2n \right)!}\)

c- \({{a}_{n}}=\frac{{{n}^{2}}{{2}^{n}}}{n!}\)

d- \(\left\{ \frac{1}{{{3}^{n}}},-\frac{1}{{{3}^{6}}},\frac{1}{{{3}^{7}}},-\frac{1}{{{3}^{8}}},.... \right\}\)

e- \({{a}_{n}}=\sqrt{{{n}^{2}}+3n}-n\)

f- \({{a}_{n}}=\frac{{{\left( -1 \right)}^{n}}2{{n}^{3}}}{{{n}^{3}}+1}\)

Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in