(Solution Library) Evaluate the limit (if it exists) of each of the following sequences. Indicate the results (definitions, theorems, etc.) you use to support
Question: Evaluate the limit (if it exists) of each of the following sequences. Indicate the results (definitions, theorems, etc.) you use to support your conclusions
a - \({{a}_{n}}={{\left( \frac{n-3}{n} \right)}^{n}}\)
b- \({{a}_{n}}=\frac{{{\left( n! \right)}^{2}}}{\left( 2n \right)!}\)
c- \({{a}_{n}}=\frac{{{n}^{2}}{{2}^{n}}}{n!}\)
d- \(\left\{ \frac{1}{{{3}^{n}}},-\frac{1}{{{3}^{6}}},\frac{1}{{{3}^{7}}},-\frac{1}{{{3}^{8}}},.... \right\}\)
e- \({{a}_{n}}=\sqrt{{{n}^{2}}+3n}-n\)
f- \({{a}_{n}}=\frac{{{\left( -1 \right)}^{n}}2{{n}^{3}}}{{{n}^{3}}+1}\)
Deliverable: Word Document 