[See Solution] Evaluate the integrals using the indicated substitutions. ∫ sec ^2(4 x+1) d x ; u=4 x+1 ∫ y √1+2 y^2 d y ; u=1+2 y^2 ∫
Question: Evaluate the integrals using the indicated substitutions.
- \(\int \sec ^{2}(4 x+1) d x ; u=4 x+1\)
- \(\int y \sqrt{1+2 y^{2}} d y ; u=1+2 y^{2}\)
- \(\int \sqrt{\sin \pi \theta} \cos \pi \theta d \theta ; u=\sin \pi \theta\)
- \(\int(2 x+7)\left(x^{2}+7 x+3\right)^{4 / 5} d x ; u=x^{2}+7 x+3\)
Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document 