(See Solution) Determine the limit of the function, if it exists: x→ 5^+lim ((-3)/(x-5)) x→ 4lim ((2-√x)/(4-x)) x→ -∞ lim ((6x^3+4x^2-7)/(15-7x^3))
Question: Determine the limit of the function, if it exists:
- \(\underset{x\to {{5}^{+}}}{\mathop{\lim }}\,\left( \frac{-3}{x-5} \right)\)
- \(\underset{x\to 4}{\mathop{\lim }}\,\left( \frac{2-\sqrt{x}}{4-x} \right)\)
- \(\underset{x\to -\infty }{\mathop{\lim }}\,\left( \frac{6{{x}^{3}}+4{{x}^{2}}-7}{15-7{{x}^{3}}} \right)\)
- \(\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)\), where \(f\left( x \right)=\left\{ \begin{aligned} & 4{{x}^{3}}+5,\,\,\,\,x<-1 \\ & \sqrt{2x+11},\,\,x\ge -1 \\ \end{aligned} \right.\)
- \(\underset{x\to \infty }{\mathop{\lim }}\,x{{e}^{-x}}\)
Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document 