(See Solution) Determine the limit of the function, if it exists: x→ 5^+lim ((-3)/(x-5)) x→ 4lim ((2-√x)/(4-x)) x→ -∞ lim ((6x^3+4x^2-7)/(15-7x^3))


Question: Determine the limit of the function, if it exists:

  1. \(\underset{x\to {{5}^{+}}}{\mathop{\lim }}\,\left( \frac{-3}{x-5} \right)\)
  2. \(\underset{x\to 4}{\mathop{\lim }}\,\left( \frac{2-\sqrt{x}}{4-x} \right)\)
  3. \(\underset{x\to -\infty }{\mathop{\lim }}\,\left( \frac{6{{x}^{3}}+4{{x}^{2}}-7}{15-7{{x}^{3}}} \right)\)
  4. \(\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)\), where \(f\left( x \right)=\left\{ \begin{aligned} & 4{{x}^{3}}+5,\,\,\,\,x<-1 \\ & \sqrt{2x+11},\,\,x\ge -1 \\ \end{aligned} \right.\)
  5. \(\underset{x\to \infty }{\mathop{\lim }}\,x{{e}^{-x}}\)

Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in