[Step-by-Step] Consider the region R plotted in the xy plane Where x_high=e^-y^2 , x_low=1-y^2 , Go with: f(x,y)=ye^-x , g(x,y)=y^2e^-x , h(x,y)=y^3e^-x
Question: Consider the region R plotted in the xy plane
Where
\(\begin{aligned} & {{x}_{high}}={{e}^{-{{y}^{2}}}} \\ & {{x}_{low}}=1-{{y}^{2}} \\ \end{aligned}\)Go with:
\[\begin{aligned} & f(x,y)=y{{e}^{-x}} \\ & g(x,y)={{y}^{2}}{{e}^{-x}} \\ & h(x,y)={{y}^{3}}{{e}^{-x}} \\ \end{aligned}\]
and calculate
\[\iint_{R} f(x, y) d x d y\]\[\begin{aligned} & \iint_{R}{g}(x,y)dxdy \\ & \iint_{R}{h}(x,y)dxdy \\ \end{aligned}\]
by the method of least labor on your part.
Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document 