[Solved] Consider an oligopoly in which the inverse demand function is p(∑limits_i=1^nx_i)=a-b∑limits_i=1^nx_i, a,b>0 and each firm’s cost c(x_i)=cx_i,


Question: Consider an oligopoly in which the inverse demand function is

\[p\left( \sum\limits_{i=1}^{n}{{{x}_{i}}} \right)=a-b\sum\limits_{i=1}^{n}{{{x}_{i}}},\,\,a,b>0\]

and each firm’s cost \(c\left( {{x}_{i}} \right)=c{{x}_{i}}\), \(0 n , determine the Cournot-Nash equilibrium output, profit, deviation of price from marginal cost and deadweight loss. Then evaluate the limits of all those as n tends towards infinity. Comment on the significance of your results.

Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in