[See] Consider the linear transformation L: R^3 \rightarrow R^3 given by:
Question: Consider the linear transformation \(L: R^{3} \rightarrow R^{3}\) given by:
\[L\left(\left[\begin{array}{l} x_{1} \\ x_{2} \\ x_{3} \end{array}\right]\right)=\left[\begin{array}{c} x_{1}+x_{2}+x_{3} \\ x_{1}-2 x_{2}+2 x_{3} \\ x_{1}+2 x_{2}-x_{3} \end{array}\right]\]- What is the matrix of \(L\) with respect to the standard basis \(S: e_{1}, e_{2}, e_{3}\) of \(R^{3} ?\)
-
Consider the basis \(T: u_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], u_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], u_{3}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\).
What is the transition matrix from \(T\) to \(S\) ? - What is the matrix of \(L\) with respect to the basis \(T\) ?
Price: $2.99
Solution: The downloadable solution consists of 3 pages
Deliverable: Word Document 