[Steps Shown] Consider the function f(x, y) given by f(x, y)= \begincases(|x y|^a)/(x^2+y^2-x y) \text ,if (x, y) ≠q(0,0) , 0 , \text if (x, y)=(0,0)\endcases
Question: (3 points) Consider the function \(f(x, y)\) given by
\[f(x, y)= \begin{cases}\frac{|x y|^{a}}{x^{2}+y^{2}-x y} & \text { ,if }(x, y) \neq(0,0) \\ 0 & , \text { if }(x, y)=(0,0)\end{cases}\]Find all the values of the real number \(a\) such that \(f\) is continuous everywhere.
Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document 