[Solution Library] Calculate the following limits. Justify your approach: continuity, L'Hopital's ruel, sequences. Lim;_v \rightarrow 2 (v^2+2 v-8)/(v^4-16) lim


Question: Calculate the following limits. Justify your approach: continuity, L'Hopital's ruel, sequences.

  1. \(\operatorname{Lim}_{v \rightarrow 2} \frac{v^{2}+2 v-8}{v^{4}-16}\)
  2. \(\lim _{x \rightarrow 0} \frac{\operatorname{Ln}\left(x^{2}\right)}{x}\)
  3. \(\lim _{x \rightarrow 0} \frac{x-\sin ^{2} x}{2^{x}-x-1}\)
  4. \(\operatorname{Lim}_{x \rightarrow-5^{+}} \frac{|x+5|}{x+5}\)
  5. \(\operatorname{Lim}_{x \rightarrow \infty} \frac{\sqrt{x^{2}-x-3}}{3 x+5}\)

Price: $2.99
Solution: The downloadable solution consists of 2 pages
Deliverable: Word Document

log in to your account

Don't have a membership account?
REGISTER

reset password

Back to
log in

sign up

Back to
log in