How To Deal With the Central Limit Theorem, and is it Related to the Normal Distribution?


\[f\left( x \right)=\frac{1}{\sqrt{2\pi {{\sigma }^{2}}}}\exp \left( -\frac{{{\left( x-\mu \right)}^{2}}}{2{{\sigma }^{2}}} \right)\]

Manipulating the Normal Distribution

\[\int\limits_{-\infty }^{\infty }{\frac{1}{\sqrt{2\pi {{\sigma }^{2}}}}\exp \left( -\frac{{{\left( x-\mu \right)}^{2}}}{2{{\sigma }^{2}}} \right)dx}=1\]

\[\int\limits_{-\infty }^{\infty }{\frac{x}{\sqrt{2\pi {{\sigma }^{2}}}}\exp \left( -\frac{{{\left( x-\mu \right)}^{2}}}{2{{\sigma }^{2}}} \right)dx}=\mu\]

and

\[\int\limits_{-\infty }^{\infty }{\frac{{{x}^{2}}}{\sqrt{2\pi {{\sigma }^{2}}}}\exp \left( -\frac{{{\left( x-\mu \right)}^{2}}}{2{{\sigma }^{2}}} \right)dx}={{\mu }^{2}}+{{\sigma }^{2}}\]

Standard Normal Distribution and Z-scores

\[Z=\frac{X-\mu }{\sigma }\]

\[Z=\frac{X-\mu }{\sigma}\]

\[X-72<75.5-72\]

\[\frac{X-72}{8}<\frac{75.5-72}{8}\]

The Central Limit Theorem (CLT)

This tutorial is brought to you courtesy of MyGeekyTutor.com



In case you have any suggestion, please do not hesitate to contact us.

log in

reset password

Back to
log in
Copy Protected by Chetan's WP-Copyprotect.